27 Teoremas sobre Integrales

Teorema 27.1 (Regla de Barrow).

Sean f\displaystyle f y F\displaystyle F continuas en [a,b]\displaystyle[a,b] y F\displaystyle F derivable en (a,b)\displaystyle(a,b) tal que F(x)=f(x)x(a,b)\displaystyle F^{\prime}(x)=f(x)\;\forall x\in(a,b). Entonces,

abf(x)dx=[F(x)]ab=F(b)F(a)\displaystyle\int^{b}_{a}f(x)\;\mathrm{d}x=\left[F(x)\right]^{b}_{a}=F(b)-F(a)
Teorema 27.2 (fundamental del calculo).

Si f\displaystyle f es continua en [a,b]\displaystyle[a,b] entonces existe una funcion F\displaystyle F tal que F(x)=f(x)x[a,b]\displaystyle F^{\prime}(x)=f(x)\;\forall x\in[a,b].

Demostración.

Sabemos que si f\displaystyle f es continua en [a,b]\displaystyle[a,b] entonces es integrable en [a,b]\displaystyle[a,b]. Dado x[a,b]\displaystyle x\in[a,b], tambien se tiene que f\displaystyle f es integrable en [a,x]\displaystyle[a,x]. Definimos F(x)=axf(t)𝑑t\displaystyle F(x)=\int^{x}_{a}f(t)dt. Veamos que F(x)\displaystyle F(x) es derivable en c[a,b]\displaystyle c\in[a,b] es decir, F(c)=lı´mh0F(c+h)F(c)h=f(c)ε>0δ>0\displaystyle F^{\prime}(c)=\mathop{\operator@font l\acute{{\imath}}m}\limits_% {h\to 0}\frac{F(c+h)-F(c)}{h}=f(c)\Rightarrow\forall\varepsilon>0\;\exists% \delta>0 t.q. si h(δ,δ),h0,\displaystyle h\in(-\delta,\delta),h\neq 0, se cumple |F(c+h)F(c)hf(c)|<ε\displaystyle\left|\frac{F(c+h)-F(c)}{h}-f(c)\right|<\varepsilon.

|F(c+h)F(c)hf(c)|\displaystyle\displaystyle\left|\frac{F(c+h)-F(c)}{h}-f(c)\right| =|ac+hf(t)𝑑tacf(t)𝑑thf(c)|=|cc+hf(t)𝑑thf(c)|\displaystyle\displaystyle=\left|\frac{\int^{c+h}_{a}f(t)dt-\int^{c}_{a}f(t)dt% }{h}-f(c)\right|=\left|\frac{\int^{c+h}_{c}f(t)dt}{h}-f(c)\right|
=|cc+hf(t)𝑑thf(c)|=|cc+hf(t)𝑑thf(c)1hcc+h1𝑑t=1|\displaystyle\displaystyle=\left|\frac{\int^{c+h}_{c}f(t)dt}{h}-f(c)\right|=% \left|\frac{\int^{c+h}_{c}f(t)dt}{h}-f(c)\cdot\underbrace{\frac{1}{h}\int^{c+h% }_{c}1dt}_{=1}\right|
=|1h[cc+hf(t)𝑑tf(c)cc+h1𝑑t]|=|1hcc+hf(t)f(c)dt|\displaystyle\displaystyle=\left|\frac{1}{h}\cdot\left[\int^{c+h}_{c}f(t)dt-f(% c)\cdot\int^{c+h}_{c}1dt\right]\right|=\left|\frac{1}{h}\cdot\int^{c+h}_{c}f(t% )-f(c)dt\right|
|1h|cc+h|f(t)f(c)|𝑑t=|F(c+h)F(c)hf(c)|<?ε\displaystyle\displaystyle\leq\left|\frac{1}{h}\right|\int^{c+h}_{c}\left|f(t)% -f(c)\right|dt=\left|\frac{F(c+h)-F(c)}{h}-f(c)\right|\overset{?}{<}\varepsilon

Sea ε>0\displaystyle\varepsilon>0. Como f\displaystyle f es continua en c\displaystyle c, entonces δ>0\displaystyle\exists\delta>0 tal que t(cδ,c+δ)\displaystyle\forall t\in(c-\delta,c+\delta), tc\displaystyle t\neq c, se cumple |f(t)f(c)|<ε\displaystyle\left|f(t)-f(c)\right|<\varepsilon. Luego h(δ,δ),h0\displaystyle\forall h\in(-\delta,\delta),h\neq 0, suponemos que h>0\displaystyle h>0 (similar si h<0\displaystyle h<0) y tenemos que

|F(c+h)F(c)hf(c)|\displaystyle\displaystyle\left|\frac{F(c+h)-F(c)}{h}-f(c)\right| 1|h|cc+h|f(t)f(c)|𝑑t<1hcc+hε𝑑t\displaystyle\displaystyle\leq\frac{1}{\left|h\right|}\cdot\int^{c+h}_{c}\left% |f(t)-f(c)\right|dt<\frac{1}{h}\cdot\int^{c+h}_{c}\varepsilon dt
=1hεcc+h1𝑑t=1hεh=ε\displaystyle\displaystyle=\frac{1}{h}\cdot\varepsilon\cdot\int^{c+h}_{c}1dt=% \frac{1}{h}\cdot\varepsilon\cdot h=\varepsilon

*Borrador, falta reescribirlo* ∎

Integración por partes, cambios de variable.